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Abstract
Optical communications to and from deep space probes will require beams possessing
divergence on the order of a microradian, and must be steered with sub-microradian precision.
Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered
for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type,
there are ultimately no restrictions on the angular resolution. Computer simulations are used to

obtain that result, and to analyze the influence of beam truncation and substrate flatness on the

performance of this type of device.



1. Introduction

As NASA develops a need to transmit greater amounts of data over long distances, there
is a need to develop new technologies capable of such performancel’z; Current S- and X-band
RF technology provides only limited room for increasing the data communication rate™. The
use of Ka-band technology may increase the usable photon flux by a few orders of magnitude,
but even that may not be enough to permit, for example, high-speed long-distance
communication of high-resolution image data®. In addition, increasing the RF transmitter power
level does not get past bandwidth limitations of the carrier frequency. For that reason, NASA is
exploring the use of shorter wavelengths in the near IR, where the greater directivity of
transmitting beams can increase photon flux and bandwidth.

However, this potential benefit is not without cost, for it involves trading problems with
existing RF technology for a new set of problems. Among these new problems is the necessity
for some means of high-resolution optical beam steering in order to maintain connection of the
more directional signal beam with the distant receiver. Because of the anticipated demand for
higher data rates at all transmission distances, special steps must be taken in order to ensure a
high signal concentration at the receiving end. In order to maintain the intensity of a propagating
laser beam after long propagation distances, the beam must possess a divergence of a few
microradians or less. Along with this directivity requirement comes the need for steering
capability of even greater accuracy, i.e. sub-microradian beam pointing technology”.

The most mature beam steering devices achieve deflection through mechanical means.
Although mechanical pointing technology is being considered for use in deep-space optical

communications>®’, such devices may not provide the needed precision.



In this paper we discuss factors influencing the range, resolution, and number of steering
angles available from a liquid crystal spatial phase modulator (LC-SPM). Computational
simulations are used to quantify the effect of phase stair-stepping on beam steering (i.e.
diffractive) performance. Simulation data is also presented to quantify the impact of beam
truncation by the diffracting aperture and surface flatness.

These devices can be designed at or between either of two extremes; large pixels
producing stair-stepped phase modulation or small pixels whose director distortions produce
smoothed phase profiles. Here, we discuss the large pixel variety. The effects of director

distortion and finite cell thickness will be considered in later publications

2. Background
The LC-SPM consists of two glass plates sandwiching a thin (~10pm or less) layer of
liquid crystalline material. One substrate is coated with a single common electrode, usually held

at zero Volts. The other glass substrate is patterned with a number of uniformly sized and spaced

discrete electrodes.

If suitably addressed, the electrodes of the LC-SPM selectively reorient the liquid crystal
to form a one-dimensional phase grating. That grating is used to impose a periodic “blazed”
phase profile onto incident light (Fig 1). The goal is to provide the equivalent of a linear phase
ramp with its 27 phase degeneracies removed (Fig. 2). Operated in this fashion, the LC-SPM
can be used as a means of redirecting the path of monochromatic light in one dimension. Two-
dimensional beam steering can be obtained by either cascading two one-dimensional LC-SPM’s,

or possibly by encoding onto a single device a two-dimensional array of individually addressable

electrodes.



The use of an LC-SPM in this manner has carried the label of Optical Phased Array
(OPA) technology8’9. In one implementation of liquid crystal OPA technologylo, every n™
electrode is linked together in order to reduce the number of off-device connections. That
approach is taken primarily to make more practical the fabrication of large apertures containing a
large number of electrodes. However, that approach also limits available steering angles to a
discrete number of angularly separated deflections. In order to completely cover an entire region
of interest, cascading with a second fine-tuning stage is required. Technology does exist for
connecting and individually addressing each of a moderately large number of (more than one
thousand) electrodes. This latter form of LC-OPA technology is the subject of this paper.

Prior analysis of the OPA, for which identical stair-stepped phase approximations of ideal
blaze periods are repeated across the entire device, has yielded a theoretical maximum beam

steering efficiency of®:

77=sincz(7r/N) 1)
where N is the number of stair-stepped phase segments in each identical blaze profile. It is
assumed that all modulo-27 resets of the original ideal phase profile fall between electrodes.
Below we will show this result extends to the more general case of resets falling anywhere in the
LC-SPM, even in the middle of electrodes, if the phase retardation produced by those electrodes
is properly chosen. Hence, it is predicted that individually addressable lines will permit
continuous steering from this stair-stepped LC-SPM device, without any efficiency penalty
beyond that imposed by Eq. (1). In other words, this device does not, in theory, possess any
pixel-related limit to angular resolution. This potential for achieving continuous steering from
liquid crystal OPA technology has not, to our knowledge, been previously analyzed and

discussed.



Experimental measurement of the beam steering efficiency of one OPA-like liquid crystal
grating was shown to fall short of that predicted by Eq. (1)”. The cause of that discrepancy is
one of the motivations for this paper.

As was mentioned, these devices can be implemented at or between two extremes. At
one extreme the LC-SPM pixels or stripes (one for each electrode) consist of electrodes large
enough that the phase profile exhibits stair-stepping. Fringe fields and liquid crystal elasticity at
the edges of electrodes (i.e. at the boundaries between adjacent pixels or stripes) cause some
smoothing of this stair-stepping, but the area occupied by those behaviors is relatively
insignificant relative to the much larger area of the electrodes as a whole. As a result, the device
exhibits relatively sharp phase “resets”, closely approximating that of an “ideal” blazed phase
grating (Fig. 3a). At the other extreme, the pixels or stripes would be small enough that fringe
fields and liquid crystal elasticity completely smooth out the phase profile, preventing the

appearance of sharp phase “resets” (Fig. 3b). This paper will be restricted to the former extreme.

3. Methodology

Assuming the thin-layer model, diffractive behavior can be obtained by means of Fourier
analysis or by numerical evaluation of an appropriate scalar diffraction integral, such as the

Integral Theorem of Helmholtz and Kirchhoff'%:
1 ' 1
wir)= e jn . [w(r')v G-GV y/(r')]dS' Q)
o

where y is a complex scalar field, r=(x’y’,7’) is a location on the exit surface S* of the
diffracting object, r=(x,y,z) is a location of some diffraction observation, # is the local normal to

the surface of the diffracting object, and G is the appropriate Green’s function. For a one-



dimensional grating such as is central to this discussion, the above equation is easily recast as a

line integralw:

o= =7 F"p("""")[ayw(x%@—w(x')}w o

8kz)2 R“% R,

where for a one-dimensional planar diffracting aperture R=r-r’|, r=(x»,0), r’=(x’,0,0), k is the
magnitude of the wave vector, and the aperture extends over the range xc[-dd].

The two terms inside the bracket in Eq. (3) are direct descendants of the two Rayleigh-
Sommerfeld components of Eq. (2). In general, if paraxial calculations are carried out for feature
sizes within the aperture and propagation distance both much larger than the wavelength, the two
Rayleigh-Sommerfeld components and the Helmholtz-Kirchhoff average of the two do not
produce significantly different results, in particular for small deflection angles. The
computations in this study evaluate the second term. For a Gaussian profile at the minimum
beam waist, that term is the one-dimensional profile of the electric field of the beam:

w(x')=E, CXP[— (x%z}exp[ifﬁ(f)] 4)

0

where wg is the minimum beam waist radius and x” is the in-plane distance from the center of the
beam. In order to simulate phase gratings, the phase term, exp[in(x’)] can be tailored to the
desired grating profile. For an unhindered Gaussian beam, @(x)=0. This scalar form of the
phase-modulated source constitutes a thin layer approximation of fields transmitted through the
grating.

Since the application of interest is optical communication to and from deep space probes,

it is assumed that the propagation distance Rj=|r-r’| in Eq. (3) is large enough to qualify the



diffractive behavior as “far field” (beyond some propagation distance, angular dependence of
diffraction will be independent of that distance).

All calculations below were performed for a A=1pm Gaussian beam with a minimum
waist of 25c¢m coinciding with the “very thin” LC-SPM. Some results are presented in the form
of Strehl ratios. The Strehl ratio is defined here as the ratio of a particular diffracted intensity
(field squared) to the peak intensity at the same propagation distance for an unhindered beam.
That reference point was computed using the same Gaussian source, for an aperture diameter
equal to 8wy. For calculations of the Strehl ratio, in which one intensity is divided by another,
the value of Ey is not important.

The calculations below cover small deflection angles and large diffraction distances, so
the Fraunhofer approximation could provide enough accuracy. Nevertheless, we have employed
the more time consuming but also more accurate method of Eq. (3). The more intuitive Fourier-
optics representation (i.e. analytical representation of the Fraunhofer approximation) is not so
easily obtained for complicated forms of surface fields, but is given in Appendix A for one of the

particular cases appearing in this paper.

4. Results

The above calculation method was utilized to gauge the impact of beam truncation,
surface flatness, and phase stair-stepping on the performance of large-pixel LC-SPM’s. Since it
is desirable to provide the maximum signal intensity to the receiver, it is important to know how

each of these factors will influence the design of free-space optical communication components

such as the beam-steering LC-SPM.



A. Beam Truncation

It is well known that if an aperture is smaller that the beam of light directed at it, the
aperture not only blocks some of the incident light but also redirects some of the transmitted light
into higher diffraction orders. This will also affect the Strehl ratio at the center of the
propagating beam. For example, the impact of beam truncation on a 25cm-waist beam with
J=1um is illustrated in Fig. 4. If the aperture’s width is four times the minimum beam waist
(which is assumed to occur in the aperture “plane”), the Strehl ratio measured at the center of the
propagating beam in the far field is still a healthy 0.99. If the aperture size is reduced to three
times the minimum waist, the Strehl ratio is reduced to 0.94, and if the aperture is further
reduced to twice the minimum waist, to 0.72. Such losses would set an upper limit for the

performance of the entire communications system.

B. Imperfect Optical Surfaces

If an optical surface in a beam steering device is less than perfect, those aberrations also
reduce the amount of energy delivered to the intended direction. Optical surface imperfections
are commonly decomposed into constituent aberration modes, which are then related to image-
related effects. Liquid crystal devices employ flat glass and reflective substrates whose surfaces
are perhaps better represented as a Fourier sum of surface undulation terms, each term of a
different spatial frequency. One can then analyze the optical effect of each frequency component
and determine which spatial frequency components, and how much of each, can be tolerated.
The basic form of the phase undulation, concave at the center of the one-dimensional slice

through the aperture, was given the form:



$(x) =274 cos[zn(x—_—xgﬁ"l‘ - o.sﬂ )

where A is one-half of the peak-to-valley amplitude of the undulation, x is the surface location,
Xmidpoint 1S the center of the aperture, and D is the width of the aperture. This factor was
substituted into Eq. (4) to obtain the thin-layer approximation of the field transmitted through or
reflected from the surface. In the case of a reflected surface, Eq. (5) was multiplied by two,
accounting for the total optical path offset.

That effect can be computed for the case of light reflected from a nominally flat mirror.
Assuming that the mirror size is four times the minimum waist (which coincides with the mirror
surface), the effect of a surface undulation whose period equals the aperture size can be seen in
Fig. 5. Those results were obtained for the case of an undulation centered on the minor, concave
at the center. Even if the peak-to-valley undulation amplitude is a very fine A/20, the resulting
Strehl ratio at the center of the far field is reduced to 0.94. Performance for larger undulation
amplitudes is noticeably worse (Fig. 6). For even higher undulation frequencies, light will
continue to be diverted into other diffraction orders until the undulations become smaller than a

wavelength, at which point the surface will again appear to be flat.

Of course, a glass or reflective silicon substrate employed in a LC-SPM could possess a
range of undulation frequencies resulting from the manufacturing process, so no one spatial
frequency will dominate. Nevertheless, it is clear that manufacturing imperfectionS will play a
role and should be considered.

There is another reason why this last point provides reason for concern. If space probes
are to be equipped with meter-class optical apertures, it will not likely be feasible to launch glass

apertures of thickness sufficient to provide stable, precise optical surfaces. Instead, optical
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components will likely be of lower mass, and thus not as rigid, more prone to significant surface
imperfections. In order to make use of optical surfaces with substantial imperfections, it may be
necessary to perform wavefront correction close to the source of the imperfections. It is not

inconceivable that a two-dimensional LC-SPM could provide that function while simultaneously

steering the beam.

C. Phase Stair-stepping

We now return to the issue of phase stair-stepping, which is the product of the segmented
design of LC-SPM electrodes. As shown in Figs. 2 and 3a, the principle behind OPA technology
involves removing the 27 degeneracies from a linear phase ramp prescribing the beam deflection
angle, and then utilizing that blazed phase profile to assign phase values to the OPA’s segments.
This process is simple and straightforward if all of the “resets” fall between segments, as shown
in Fig. 3a. However, as was mentioned earlier, that approach only permits a finite number of
discrete deflection angles, thereby placing a limitation on beam steering angular resolution.

The angular resolution, as the term is used here, is not the same as the ability of a beam
steering device to resolve spots. The maximum number of resolvable spots obtainable from a
beam deflecting device has been defined as the device’s maximum deflection angle divided by
the beam’s “diffraction limited angle”'®. For a Gaussian beam that angle is defined as the
divergence angle. If a beam steering device is engineered to provide deflection to only those
separated angles, it will not be capable of continuously covering each point in its angular range
with a signal of uniform intensity (see Fig. 7). A device may be capable of resolving the
maximum number of spots within its angular range, but unless it can steer to angles between the

Jocations of those spots, its angular resolution is limited to the angle between those spots. In
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order to permit very high signal intensities everywhere within the device’s angular range, it
needs an angular resolution finer than that spot resolution.

Achieving sub-spot angular resolution (i.e. sub-microradian resolution, for deep space
optical communications using meter-class transmitting apertures) may at times require that the
original linear phase ramp will not produce resets which fall between OPA segments (Fig. 8). It
is important that any such OPA segments produce the appropriate phase retardation level. If the
phase of those segments is incorrectly assigned, diffraction performance (i.c. beam steering
efficiency) will suffer.

One obvious approach is to assign to each of these “interperiod” segments a phase equal
to the average value of the ideal blazed phase prbﬁle within the segment, as shown in Fig. 9.
This approach can then be described as applying two operations to the original linear phase
ramp, namely modulo-27 and area averaging, in that order. Those two operations can be
reversed, producing interperiod phase values as shown in Fig. 10.

In either case, the resulting phase profile does not, at first glance, appear to form an
efﬁéient grating. For instance, applying the first approach to a linear phase ramp for which the
modulo-27 blaze width is equal to the width of 2 and 1/3 electrode segments, the resulting phase
profile will appear as shown in Fig. 11a. The phase profile using the second approach appears in
Fig. 11b. Itis only when the blaze width equals an integer number of electrode segments that the
stair-stepped phase profile obtained using either approach will produce identical stair-stepped
blazes as are found in Fig. 3a.

Diffraction simulations were performed for each of the two gratings. In each simulation,
stair-step segments of 100pm were used to define the stair-stepped phase profiles coyering alm

wide one-dimensional aperture. Each simulation was carried out over a range of deflection
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angles, each of which is characterized by its own ideal linear phase ramp. Each linear phase
ramp corresponds to a number of electrode segments per ideal blaze period, not necessarily an
integer. At each value of electrodes per period, the diffracted intensity at the intended far field
deflection angle was divided by that produced by the corresponding unbroken linear phase ramp
to produce the Strehl ratio data appearing in Fig. 12.

For both stair-step approaches, the Strehi ratio at integer values of electrodes per period
matches that obtained from Eq. (1). For non-integer values, the first approach falls well below
those values, while the second approach does not. This simulation indicates that continuous,
high-resolution steering is possible from the LC-SPM, enough to obtain the sub-microradian
precision capable of maintaining signal intensity at a distant receiver. Performance does begin to
falter at and below eight electrodes per period, as has been noted®"".

Although it might appear that the “irregular periodicity” (see Fig. 11b) of the more
desirable second stair-step approach might violate the grating condition of its underlying blazed
phase profile, such is not the case. The center of each of the stair-step segments does fall on the

underlying linear phase ramp, an on its blazed-phase equivalent.

5. Conclusions

Implementation of optical communications with deep space probes will require very
precise sub-microradian steering of the communication beam. We have analyzed the possibility
of using liquid crystal spatial phase modulators (LC-SPM) to meet this need. Three factors
influencing the beam steering performance of these segmented liquid crystal devicés have been

analyzed: beam truncation, surface flatness, and phase stair-stepping.
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If transmitting a laser beam through an aperture, any truncation of the beam by the
aperture detracts from the intensity arriving at a distant receiver. This effect begins to be noticed
for apertures less than four times the waist of the beam passing through the aperture.

It is also important to avoid wavefront distortions resulting from imperfect optical
surfaces, such as reflective or transmissive substrates used in the fabrication of the LC-SPM.
Analysis shows that imperfections of as little as A/20 can impose performance penalties of
approximately 5%, and much more as the magnitude of surface imperfection grows. If those
imperfections cannot be eliminated, wavefront correction is necessary, and the LC-SPM may be
capable of performing those corrections.

Further analysis was conducted for one limiting case of LC-SPM, that is electrodes large
enough that fringe fields and elastic behavior contribute very little to device performance. In that
case, the phase retardation profile produced by an LC-SPM will appear to be stair-stepped. In
order to maximize LC-SPM speed and minimize scattering losses, the device should be as thin as
possible, which means removing the 27 degeneracies from the phase profile. That step produces
phase “resets” in the final stair-stepped phase profile.

It is already known that these resets do carry a penalty, but prior analyses considered only
the case in which individual stair-step approximated blaze periods contain fixed and identical
numbers of segments. This limits the use of segmented liquid crystal devices to a finite number
of discretely separated steering angles. That result has been extended to the more geﬁeral case of
phase resets falling on, and not just between, electrode segments. There is a correct choice for
the phase value to be produced at electrodes for which a reset falls within bounds of that
electrode. If the phase stair-step is obtained by averaging the value of the underlying blazed

phase profile over each electrode before removing the 27 degeneracy, analysis shows that it does
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not matter where the reset falls. As a result, we can say that continuous beam steering is possible
without any added penalty.

As is already known, increasing the steering angle (i.e. blazes of smaller size) or
increasing the number of waves being corrected by a given fixed aperture results in increased
diffractive losses. Use of eight steps per blaze will result in theoretical 5% loss, measured at
receiver’s collecting aperture.

This limiting behavior occurs when the electrode size/spacing is much larger than either a
wavelength of light, or than the spatial extent of liquid crystal elasticity or fringing fields
produced by the finiteness of electrodes. Those other limiting behaviors will be the subject of

future study.
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Appendix A

As has been done in other studies®>", simply periodic liquid crystal phase gratings such
as shown in Fig. 3a can be approached as a linear system'(’, making the task of Fourier analysis
straightforward. Here, we will also apply that approach to the grating represented in Fig. 11b.

Making use of the thin-layer approximation, the transmission function of the grating is:

m=—c

flx)= {l:exp(lbr / )Z Slx- nw)] ® W(w)}W(L) ® Z 5(x- mL) ©6)

W(w) =rect

—W
- AJ Q)
w

-L
w(L)= rect( / | (8)

where the exponential is the ideal linear phase ramp (which this grating is to approximate),
sampled once for each stair-step of width w in the device using the first impulse function series.
Each sampled phase value is then ascribed uniformly to its entire stair-step width (i.e. electrode
spacing in an LC-SPM) by convolving the sampled phase with a window of the éme width.
This produces an infinite stair-stepped phase function. The stair-step is truncated by the period L
over which the stair-step representation repeats. In general, L is not necessarily equal to a, but is
always some integer multiple of @. This repeatable grating unit (distance between identically
stair-stepped “blazes”) is then reproduced infinitely by the last convolution.

The reader may note that this is an infinite grating, i.. the function above is not
windowed with a finite aperture. The above infinite form will produce a diffraction pattern

nearly identical to the pattern resulting from an aperture large enough to avoid “significant”
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truncation of a Gaussian beam passing through it. In other words, this is the appropriate
expression of surface fields emerging from an optical communication transmitter such as
described in the body of this paper.

The Fraunhofer diffraction approximation can be obtained from Eq. (6) above by
calculating the Fourier transform of each of it parts, and then composing the composite result
assuming a linear system. The resulting diffraction profile is:

1wo=E}m{gwmﬂmg}m{g@_mu_%ﬂ o)

n=-—w

u, =" (10)
a

u, =22 (1
w

where u, and u,, are spatial frequencies characteristic of the pre-segmented distances between
resets and the electrode spacing, a and w, respectively. The last impulse function series in Eq.

(6) restricts the permissible spatial frequencies u to:

y = 2 (12)

L

where L is the periodic length of the stair-stepped grating’s phase profile (which may include any

number of stepped “blazes™), and m is an integer. The spatial frequency can be converted to a far

field angle from the relation u=ksin(6).
Calculations using Eq. (9) agree with the results shown in Fig. 11 for the case in which
all electrodes (including those overlapping reset edges) are assigned a phase equal to the average

of the desired linear phase ramp, then operated on by-modulo-27.
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Figure Captions

Figure 1. Conception of three periods from a liquid crystal spatial phase modulator, with lower
electrode voltages selected to produce blazed-phase grating.

Figure 2. Ideal linear phase ramp, characteristic of deflected plane waves, has its 2z phase
degeneracies removed.

Figure 3. Phase retardation profiles produced by (a) Large Pixel OPA showing phase stair-
stepping, and (b) Small Pixel OPA, showing evidence of “phase smoothing” resulting from
increased significance of the spatial extent of fringing fields and liquid crystal elasticity

Figure 4. Intensity profiles, in the far field, of a Gaussian beam which has been truncated in the
plane of the minimum waist. Intensity is normalized to that of an unhindered beam. At the beam
center, this ratio is the Strehl ratio.

Figure 5. Effect of sinusoidal surface undulations on far field intensity distribution of Gaussian
beam reflected from a non-ideal mirror surface. . At the beam center, this ratio is the Strehl ratio.
Figure 6. Strehl ratio vs. surface undulation amplitude, for 3 different undulation spatial
frequencies, for a Gaussian beam reflected from anon-ideal mirror surface.

Figure 7. Coverage of far field, from an OPA for which steering resolution is limited to the spot
resolution. Not all parts of far field will be able to see the signal at its most intense.

Figure 8. Ideal linear phase ramp, after application of modulo-27 operation, overlaid onto
patterned electrodes, for the case in which phase resets do not coincide with the boundary
between electrodes.

Figure 9. For the case of Figure 7, applying the phase-averaging operation to the interperiod

electrode, after first applying the modulo-27 operation to the ideal linear phase ramp.
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Figure 10. For the case of Figure 7, applying the modulo-27 operation to the interperiod
electrode, after first applying the phase-averaging operation to the ideal linear phase ramp.
Figure 11. Sections of grating phase profile, after (a) application of modulo-27 and then phase-
averaging operation, and (b) reversing the order of those operations.

Figure 12. Strehl ratio vs. number of electrodes per ideal blaze period, showing the effects of

non-integer numbers for the two methods of assigning phase to interperiod electrodes.
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Incident light

Figure 1. Conception of three periods from a liquid crystal spatial phase modulator, with lower

electrode voltages selected to produce blazed-phase grating.
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Figure 3. Phase retardation profiles produced by (a) Large Pixel OPA showing phase stair-

stepping, and (b) Small Pixel OPA, showing evidence of “phase smoothing” resulting from

increased significance of the spatial extent of fringing fields and liquid crystal elasticity
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Figure 4. Intensity profiles, in the far field, of a Gaussian beam which has been truncated in the
plane of the minimum waist. Intensity is normalized to that of an unhindered beam. At the beam

center, this ratio is the Strehl ratio.
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Figure 5. Effect of sinusoidal surface undulations on far field intensity distribution of Gaussian

beam reflected from a non-ideal mirror surface. . At the beam center, this ratio is the Strehl ratio.
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Figure 6. Strehl ratio vs. surface undulation amplitude, for 3 different undulation spatial

frequencies, for a Gaussian beam reflected from anon-ideal mirror surface.
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Figure 7. Coverage of far field, from an OPA for which steering resolution is limited to the spot

resolution. Not all parts of far field will be able to see the signal at its most intense.
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Figure 8. Ideal linear phase ramp, after application of modulo-2n operation, overlaid onto
patterned electrodes, for the case in which phase resets do not coincide with the boundary

between electrodes.
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Figure 9. For the case of Figure 7, applying the phase-averaging operation to the interperiod

electrode, after first applying the modulo-2 7 operation to the ideal linear phase ramp.
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Figure 10. For the case of Figure 7, applying the modulo-27 operation to the interperiod

electrode, after first applying the phase-averaging operation to the ideal linear phase ramp.
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Figure 11. Sections of grating phase profile, after (a) application of modulo-27 and then phase-

averaging operation, and (b) reversing the order of those operations.
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Figure 12. Strehl ratio vs. number of electrodes per ideal blaze period, showing the effects of

non-integer numbers for the two methods of assigning phase to interperiod electrodes.
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